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Two-center zero-field splitting (ZFS) integrals have been calculated by numerical integration of 
Coulomb repulsion integrals which are evaluated over basic charge distributions as defined by 
Roothaan in terms of Slater atomic orbitals. The method is applied to the calculation of the ZFS 
integrals for ~-~z, a-~ and r electron interactions on C, N and N + centers. Numerical results are given. 

Zweizentren ZFS-Integrale sind mittels numerischer Integration yon Coulombintegralen berech- 
net worden, und zwar die ~-~-, ~-~- und a-a-Integrale an C-, N- und N+-Zentren. Die numerischen 
Resultate werden mitgeteilt. 

Les int6grales bi-centriques de s6paration ~ champ nul (ZFS) ont 6t6 calcul6es par int6gration 
num6rique des int6grales de r6pulsion coulombiennes 6valu6es pour les distributions de charge fonda- 
mentales d6finies par Roothan en termes d'orbitales atomiques de Slater. La m6thode est appliqu6e 
au calcul des int6grales ZFS poui: les interactions ~ -  ~, a -  ~ et cr-  a sur les centres C, N e t  N +. 
R6sultats num6riques. 

Introduction 

In order to calculate the ZFS parameters D and E, describing the energy 
splitting of a triplet state at zero-field due to magnetic dipolar interaction between 
the two unpaired electron spins, numerical values of the two-center contributions 
to D and E are required. 

D and E are defined as [1] 

D= 3 (g~)2 (~r(1,2)l r~2- gz22 
r~ 2 ~pr(1, 2)) 

and 

where ~pr(1, 2) stands for an antisymmetrical space function of the unpaired 
electrons in the triplet state. 

In the calculations of two-center ZFS integrals the greatest difficulty is the 
treatment of the operators which involve an inverse power of third degree of the 
interelectronic distance rt2. In the literature several attempts concerning the 
evaluation of the integrals have been described. Pitzer et al. [2] computed the 
necessary integrals by direct expansion of the operators in solid spherical 
harmonics, using the Gaussian transform technique. A similar method has been 
used by Boorstein and Gouterman [3] in calculations on ZFS parameters of 
phosphorescent aromatic molecules. Prosser and Blanchard [4] and Lounsbury 
[5] applied a Fourier transform technique. The latter expanded the ZFS integrals 
in one-center representations, using Slater-type orbitals. Geller [61 succeeded to 
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extend the Fourier convolution theorem to two-electron two-center integrals 
and expressed these integrals in closed analytical form. The integrals were 
evaluated over basic charge distributions as defined by Roothaan [7]. Geller's 
method has been employed by Capello and Pullman [-8] in calculations of D 
values for ~-~ interactions on carbon and nitrogen nuclei. Because of the use of 
the rather complicated Fourier transform technique, Geller's method demands 
much effort in compiling the necessary integrals. To avoid this difficulty we want 
to introduce here a less laborious technique. Taking advantage of an alternative 
formulation of the D and E operators, the ZFS integrals are reduced directly to 
two-center repulsion integrals. 

The method has been used for the calculations of dipolar interactions between 
re-re, a-re and a-a electrons on carbon and nitrogen nuclei. 

Evaluation of ZFS Integrals over Basic Charge Distributions 

Using a coordinate system according to Roothaan [-7] (z-axis as internuclear 
axis), the D and E operators can be formulated, in conformity with the 
suggestions of Schrader [9] and Oosterhoff (cited in Ref. [10]), as follows 

3 8 8 1 
Dop- 4 (gfl)2 ~xl 8x2 r12 

and 

Eop= 4 (gfl)2 8Yl  8Y2 + 8zl  r12 

Using this formulation of the operators, the LCAO approximation of the triplet 
wave function gives rise. to one-, two-, three- and four-center contributions to 
the ZFS parameters. The one-center integrals need not to be regarded here, the 
three- and four-center integrals are neglected. The computational procedure will 
be demonstrated by calculating the two-center D values for ~-electrons, which will 
further be denoted by D12. In the calculation of D12 only repulsion integrals of 
Coulomb-type will be taken into account, the exchange integrals may be 
neglected [11]. 

After integration by parts D12 is given by 

3 1 8 8 
D12 = [p,(1) pb(2)]2 drl dr2 . 

r12 

The atomic orbitals Pa and Pb can be written as 

pa=Nax, e -~'~ and pb=NbXbe-P'b 

where N~ and Nb are normalization constants and e and fi Slater exponents on the 
centers a and b, respectively. 

Expanding D 12 it follows that 

3 ( ) 1  
D~2= (gfl)2.4NZN~If x~(1) e -2 . . . .  a e -2"~ 

r a 

(Xb(2)e- 2flrb fl X2( 2)rb e- 2flrQ dzl dz 2 
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which can be written as 

DI~ = 3(gfl) 2. N ff NbZ(I~ + I z + I 3 + I~) 

where 11-14 are Coulomb integrals following from the integral part of Dlz. 
These have to be expressed in basic charge distributions IN, L, M] as defined by 
Roothaan [71; they are given by the expression 

( 2 L +  1 1~ 2L(2(Z) s+2 N-Xe-Z~r,~SLM(O,q)) 
[ N , L , M ] : \ ~ )  ( N + L + I ) !  r~ 

where the functions SL, M(O, qO) represent normalized real spherical harmonics. 
Making use of this formulation the integrals I1 -  I 4 can be written as 

( X ae _ 2ctr~ 1 - 2 flrb ~ ( Arbcd l~Tbcd ~ - 1  11 ~12 Xb e )=l,~'2P~a'~'2er~,! [2erc~12Pnb] 
\ 

_ 3 ~rb~a ~rb~d ~- tn[2Pi I .13Pi ib  ] 5 ~,~2PHa" "t'~3PHbl I" 

3 
+ 2~(Nb2~no �9 N~an~)-~fl[2PH,J3FHb], 

X 3 
I3= \ ~  

3 ,~.b~a l~Ibcd ~-1 o:[3PHal2PHb ] 
- -  5 Uv3Pn~" ~,2ertbJ 

and 

3 b~d ~Tb~d ~-1 e[3FH~I2PHb] + ~ (N3vno" ~'2Pn~1 

3 1 x~ X~aa e-2~ra _ _  fl__e-2flrb / 
F a F12 r b / 

1 ,~,b~d ~rO~d ~-1 ~fl[3f~ba[3FqSb ] - 1--6 [l~3FqSa" "'3F4ab! 

9 ,~,b~a azbca ~-lo~fl[3FH~Z3FHb] ~- ~ tlV3FH- ' X,3Fflby 

9 r~rbcd NbCd x-lc~fl[3Fiia[3Piib] 100 v,aen," aeub~ 

9 t~Tb~d ~Tb~ ~-l~fl[3PH.13FHb ] 
100  ~''~3PFIa" X'3FHbI 
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where the " boa coefficients N}LM are defined as 

uNbr a (2L+ 1 1 } 2L(2~) N+2 

in which N{,M is the normalization constant of a real spherical harmonic. 
All other terms occurring in the expansion of D1z vanish due to ortho- 

normality of the spherical harmonics used. 
In the evaluation of D(~r, ~r), D(rr, ~), E0r, ~r), E(rr, ~r) and E(G rr) integrals 

similar combinations of repulsion integrals appear. 
A survey of the expansion coefficients of the repulsion integrals to be used 

in the calculations of the ZFS integrals is given in Table 1. In this table the 
reciprocal values of the constants N~(~t and the normalization factors of the Slater 
orbitals used, have been included in the integrals [NLMa] NLMb]. To express 
the D integrals in cm-1, the linear combinations of the repulsion integrals have 
to be multiplied by 

3(@fl) 2 o~fl 
4hc a~ - 8.785426cr 

and those for the E integrals by 2.928475 aft. 
Some of the repulsion integrals have been given by Roothaan [7] in 

analytical form; the expressions in which a 3F term occurs have not been 
reported, however. Following Roothaan's method for the determination of 
these integrals, it appears necessary to calculate first the potential [a[3FS]. 

Using spheroidal coordinates (4, t/, ~0) for the positions of the centers a and b, 
we find for the potential of the charge distribution 3FS on b 

fl {1 ( 4• 3 2 4 + ~ 0  +-~-Q4 5 @5 ) } [aF3Fr, b]=~d- -- 1 + 2 0 + 2 ~ 2 + ~  - + 0 6 e-Z~ 

in which 0 = fir b. With help of this expression the potentials U3w, U3v n, UaVA 
and U3e4 can be deduced. Using polar coordinates (r, 0, (p), the result is 

At this stage of the evaluation all basic elements needed for the derivation 
of the two-center repulsion integrals are known. Integration over q~ can easily 
be carried out. Integration over the other two variables looks to be troublesome. 
For that reason we have evaluated the basic repulsion integrals which were not 
given by Roothaan, by numerical integration. For the practical realization of 
this method of computation, Roothaan's coordinates have been transferred into 
cylindrical ones. 

In the execution of the numerical integrations two standard techniques have 
been used, i.e. the method according to Gauss-Legendre (GaLe) and that to 
Gauss-Laguerre (GaLa) [12]. The GaLe method has been employed for the 
integration over the closed z-interval of the interatomic distance and over a part 
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Fig. 1. Illustration of the intervals for numerical calculation 

of the x-interval. For integration over all other parts of space the GaLa technique 
was used, as illustrated in Fig. 1. 

The number of quadrature points was fixed on eighteen, twelve points for the 
GaLe integration and six for the GaLa one. The values of the numerically 
calculated E 2 P FI [ 2 P II], [ 2 P FI [ 3 P II], [ 3 P II [ 2 P H] and [ 3 P II  [ 3 P I1] integrals did 
not deviate more than one millionth from those obtained from Roothaan's 
analytical formulae [7]. Increase of the number of integration points to twenty- 
four did not change the integral values. 

Applying different grids to the integration, the best results were obtained by 
using a GaLe interval in the x-direction of 1.5 a.u. and a scaling factor of2(e + fl) 
for the GaLa integration. 

For unequal basic charge distributions the values of the basic integrals have 
been checked by interchanging the two nuclei under consideration, in which case 
other potentials are involved. 

Results 

The method of the numerical integration as outlined above, has been applied 
to the calculation of D(~, ~), D(a, r O, O(a, a), E(rc, re), E(a, To) and E(~, a) integrals 
on carbon (C) and nitrogen (N and N +) nuclei as well as on combinations of 
these centers. The Slater exponents for C, N and N + were taken to be 1.59, 1.915 
and 2.09, respectively. The carbon exponent of 1.59 has been chosen to be able to 
compare the integral values with the corresponding ones as derived by 
van der Waals and ter Maten [10]. In order to obtain ZFS values needed for the 
extension of van der Waals' semi-empirical method to nitrogen containing 
molecules, the values of 1.915 for aza- and 2.09 for amino-nitrogen have been 
chosen, in conformity with Slater's rules (see e.g. Ref. [13]). 

The calculated two-center ZFS integrals for intramolecular distances in 
naphthalene have been listed in Table 2. 

Discussion 

The D(rc, re) and E(rc, re) values for carbon can be compared with those 
obtained by van der Waals and ter Maten [10], and the D(rc, ~) values for 
carbon-carbon and nitrogen-nitrogen interactions with those obtained by Capello 
and Pullman [8]. In the former case the D(rc, re) values agree very well, the 
E(~, ~) values deviate at most by five percent. In the other case a good agreement 
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Table 2. Two-center ZFS-integrals (cm-1) 

63 

r(]~) D(rc, n) E(n, n) D(n, a) E(n, o) D(a, re) E(o', 7z) D(6, or) E(o', o') 

c c  1,390 0.2268 0.2347 0.2161 0.2369 0.2161 0.2369 0.7430 0.2297 
2.408 0.0616 0.0735 0.0826 0.0967 0.0826 0.0967 0.1672 0.1393 
2.780 0.0433 0.0503 0.0572 0.0647 0.0572 0.0647 0.0988 0.0918 
3.678 0.0213 0.0234 0.0261 0.0278 0.0261 0.0278 0.0353 0,0351 
4.170 0.0152 0.0164 0.0180 0.0189 0.0180 0.0189 0.0227 0.0226 
4,815 0.0103 0.0109 0.0117 0.0122 0.0117 0.0122 0.0139 0.0139 
5,012 0.0092 0.0097 0.0104 0.0108 0.0104 0.0108 0.0121 0.0121 

CN 1,390 0.2345 0.2631 0.1916 0.2785 0.3227 0.3032 0.8194 0.3076 
2,408 0.0642 0.0758 0.0782 0.0931 0.0948 0.1048 0.1580 0.1417 
2.780 0.0451 0.0516 0.0546 0.0618 0.0630 0.0682 0.0927 0.0893 
3.678 0.0219 0.0237 0.0252 0.0268 0.0273 0.0285 0.0337 0.0336 
4.170 0.0156 0.0166 0.0175 0.0183 0.0186 0.0193 0.0218 0.0218 
4,815 0.0105 0.0110 0.0115 0.0119 0.0120 0.0123 0.0135 0.0135 
5.012 0.0094 0.0098 0.0102 0.0105 0.0107 0.0109 0.0118 0.0118 

CN + 1.390 0.2334 0.2729 0.1808 0.2915 0.3730 0.3346 0.8450 0,3464 
2.408 0.0651 0.0765 0.0767 0,0913 0.0995 0.1078 0,1538 0.1412 
2.780 0.0457 0,0520 0.0536 0.0606 0.0650 0.0695 0.0902 0,0878 
3.678 0.0221 0.0239 0.0249 0.0265 0.0278 0,0288 0.0331 0,0330 
4.170 0.0157 0.0167 0.0173 0.0181 0.0t89 0.0194 0,0215 0.0215 
4,815 0.0106 0.0110 0.0114 0.0118 0.0121 0,0124 0,0134 0.0134 
5.012 0.0094 0.0098 0.0101 0.0104 0,0107 0,0109 0.0117 0.0117 

NN 1.390 0.2573 0.2976 0.2984 0.3538 0,2984 0.3538 0.8866 0.4105 
2.408 0.0682 0.0785 0.0892 0.0999 0,0892 0.0999 0.1475 0.1399 
2.780 0.0474 0.0530 0.0597 0,0648 0,0597 0.0648 0.0866 0.0854 
3.678 0.0226 0.0242 0.0263 0,0274 0.0263 0.0274 0.0322 0.0322 
4.170 0.0160 0.0169 0.0181 0.0t87 0.0181 0.0187 0.0211 0.0211 
4.815 0.0107 0.0111 0,0118 0,0120 0.0118 0.0120 0.0131 0.0132 
5.012 0.0095 0.0099 0,0104 0.0106 0.0114 0.0106 0.0116 0.0116 

NN + 1.390 0.2629 0,3098 0.2864 0.3683 0.3486 0.3888 0.9052 0.4583 
2.408 0,0696 0,0794 0.0872 0.0977 0.0933 0.1024 0.1430 0.1378 
2.780 0,0482 0,0535 0.0586 0.0634 0.0616 0.0658 0.0842 0.0835 
3.678 0,0229 0,0243 0.0260 0.0271 0.0267 0.0277 0.0316 0.0316 
4.170 0.0161 0.0169 0.0179 0.0185 0.0183 0.0188 0.0208 0.0208 
4.815 0.0108 0.0112 0.0117 0.0119 0.0119 0.0121 0.0130 0.0130 
5.012 0.0096 0.0099 0.0103 0.0106 0.0105 0.0107 0.0114 0.0115 

N+N + 1.390 0.2716 0.3229 0.3359 0.4038 0.3359 0.4038 0.9194 0.5086 
2.408 0.0712 0.0804 0.0911 0.0999 0.0911 0.0999 0.1384 0.1351 
2.780 0.0491 0.0540 0.0603 0.0644 0.0603 0.0644 0.0820 0.0815 
3.678 0.0231 0.0245 0.0264 0.0273 0.0264 0.0273 0.0311 0.0311 
4.170 0.0163 0.0170 0.0181 0.0186 0.0181 0.0186 0.0205 0.0205 
4.815 0.0108 0.0112 0.0118 0.0120 0.0118 0.0120 0.0129 0.0129 
5.012 0.0097 0.0100 0.0104 0.0106 0.0104 0.0106 0.0113 0.0114 

ex i s t s  for  t h e  D(rc, ~) v a l u e s  o f  c a r b o n  a n d  n i t r o g e n  w h e n  c o m p a r e d  w i t h  t h e  i n t e -  

g ra l s  o b t a i n e d  f r o m  " b e s t  S l a t e r "  o r b i t a l s  ( S l a t e r  e x p o n e n t s  1.59 a n d  1.917, resp.).  

I t  m u s t  b e  n o t e d ,  h o w e v e r ,  t h a t  t he  o r t h o  D(n ,  n) v a l u e s  r e s u l t i n g  f r o m  o u r  

c a l c u l a t i o n s  a r e  s o m e w h a t  g r e a t e r  t h a n  t h o s e  p r e s e n t e d  b y  t h e  o t h e r  a u t h o r s .  

I n  v a n  d e r  W a a l s '  s e m i - e m p i r i c a l  m e t h o d  t h e  o r t h o  D a n d  E v a l u e s  h a v e  b e e n  
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reduced owing to o--re polarization. Using his analytical treatment of the one- 
center o--re integrals [14] and taking our D(rc, re), D(o-, re), E(rc, ~) and E(o-, re) 
two-center integrals, the ortho D(rc, re) and E(rc, 7r) values for carbon become 
0.151 cm -1 and 0.186cm -1, respectively, close to those proposed by van der 
Waals and ter Maten [10]. 

The D(cr, ~), D(~r, re), E(a, ~) and E(~r, re) integrals of Table 2, which have not 
been punished before, were required for the calculations of intermolecular 
contributions to the ZFS parameters of phosphorescent charge-transfer complexes. 
They have been applied successfully to the calculation of D and E parameters for 
the s-triazine/N,N-diethylaniline and benzonitrile/N,N-diethylaniline complexes 
[15, 16]. 
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